1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA

  1. Tipos de inteligencia artificial

  1. Algoritmos aplicados a la inteligencia artificial

  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data

  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades

  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro

  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático

  1. Introducción
  2. Algoritmos

  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos

  1. Clasificadores
  2. Algoritmos

  1. Componentes
  2. Aprendizaje

  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación

  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo

  1. Redes neuronales
  2. Redes profundas y redes poco profundas

  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón

  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python

  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa

  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN

  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN

  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)

  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático

  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés

  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots

  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA

  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel

  1. ¿Qué es la inteligencia artificial?
  2. Hardware y software unidos por la Inteligencia Artificial
  3. Inteligencia Artificial y Visión Artificial
  4. Arduino: introducción

  1. Instalación de Arduino
  2. Configurando tu Arduino para Python

  1. Control de Arduino

  1. Manejo de entradas
  2. Entradas analógicas

  1. Salidas analógicas
  2. Valores analógicos en Arduino

  1. Introducción al machine learning
  2. Aprendizaje supervisado
  3. Aprendizaje no supervisado

  1. Redes neuronales y deep learning
  2. Series Temporales

  1. Funciones y parámetros
  2. Variables y constantes especializadas
  3. Estructura de control

  1. Introducción
  2. ¿Qué son los datos de entrenamiento de IA?
  3. ¿Por qué se requieren datos de entrenamiento de IA?
  4. ¿Cuántos datos son adecuados?
  5. ¿Qué afecta la calidad de los datos en el entrenamiento?

  1. Crear red neural paso a paso
  2. Redes neuronales: Aprendizaje
  3. Otras redes neuronales

  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV

  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo

  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imágen

  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching

  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color

  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas

  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)